

 Navigation

 	
 index

 	
 next |

 	Python OMEMO Library-0.1.0

Contents

	Overview
	Installation

	Documentation

	Development

	Contributing

	Installation

	Usage

	Reference
	OmemoState

	Collective Code Construction Contract
	License

	Language

	Goals

	Design

	Authors

	Changelog
	0.1.0 (2016-01-11)

Indices and tables

	Index

	Module Index

	Search Page

 Copyright 2016, Bahtiar `kalkin-` Gadimov.
 Last updated on Jan 13, 2016.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Python OMEMO Library-0.1.0

Overview

	docs
	[image: Documentation Status] [https://readthedocs.org/projects/python-omemo]

	tests
	
[image: Travis-CI Build Status] [https://travis-ci.org/omemo/python-omemo] [image: AppVeyor Build Status] [https://ci.appveyor.com/project/omemo/python-omemo] [image: Requirements Status] [https://requires.io/github/omemo/python-omemo/requirements/?branch=master]

[image: Coverage Status] [https://codecov.io/github/omemo/python-omemo]

	package
	[image: PyPI Package latest release] [https://pypi.python.org/pypi/python-omemo] [image: PyPI Package monthly downloads] [https://pypi.python.org/pypi/python-omemo] [image: PyPI Wheel] [https://pypi.python.org/pypi/python-omemo] [image: Supported versions] [https://pypi.python.org/pypi/python-omemo] [image: Supported implementations] [https://pypi.python.org/pypi/python-omemo]

This is an implementation OMEMO Multi-End Message and Object Encryption in Python.

Installation

pip install python-omemo

Documentation

https://python-omemo.readthedocs.org/

Development

To set up python-omemo for local development:

	Fork python-omemo on GitHub [https://github.com/omemo/python-omemo/fork].

	Clone your fork locally:

git clone git@github.com:your_name_here/python-omemo.git

	Create a branch for local development:

git checkout -b name-of-your-bugfix-or-feature

Now you can make your changes locally.

	Run all the checks, doc builder and spell checker with tox [http://tox.readthedocs.org/en/latest/install.html] one command:

tox

Tips

To run a subset of tests:

tox -e envname -- py.test -k test_myfeature

To run all the test environments in parallel (you need to pip install detox):

detox

Contributing

The Python OMEMO project direction is the sum of documented problems:
everybody is invited to describe and discuss a problem in the issue
tracker [https://github.com/omemo/python-omemo/issues]. Contributed solutions

encourage participation.

Some problem fields we initially focus on are:

	Creation of a reusable python omemo implementation

	Reusability bu the Gajim OMEMO plugin [https://github.com/omemo/gajim-omemo]

 Copyright 2016, Bahtiar `kalkin-` Gadimov.
 Last updated on Jan 13, 2016.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Python OMEMO Library-0.1.0

Installation

At the command line:

pip install python-omemo

 Copyright 2016, Bahtiar `kalkin-` Gadimov.
 Last updated on Jan 13, 2016.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Python OMEMO Library-0.1.0

Usage

To use Python OMEMO Library in a project:

import omemo

 Copyright 2016, Bahtiar `kalkin-` Gadimov.
 Last updated on Jan 13, 2016.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Python OMEMO Library-0.1.0

Reference

	OmemoState

 Copyright 2016, Bahtiar `kalkin-` Gadimov.
 Last updated on Jan 13, 2016.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Python OMEMO Library-0.1.0

 	Reference

OmemoState

	
class omemo.state.OmemoState(connection)[source]

	
	
__init__(connection)[source]

	Instantiates an OmemoState object.

	Parameters:	connection – an sqlite3.Connection

	
__module__ = 'omemo.state'

	

	
add_devices(name, devices)[source]

	Return a an.

	Parameters:	
	jid (string) –
The contacts jid

	devices ([int]) –
A list of devices

	
add_own_devices(devices)[source]

	Overwrite the current :py:attribute:`OmemoState.own_devices` with
the given devices.

	Parameters:	devices ([int]) –
A list of device_ids

	
build_session(recipient_id, device_id, bundle_dict)[source]

	

	
bundle

	

	
create_msg(from_jid, jid, plaintext)[source]

	

	
decrypt_msg(msg_dict)[source]

	

	
device_ids = {}

	

	
device_list_for(jid)[source]

	Return a list of known device ids for the specified jid.

	Parameters:	jid (string) –
The contacts jid

	
devices_without_sessions(jid)[source]

	List device_ids for the given jid which have no axolotl session.

	Parameters:	jid (string) –
The contacts jid

	Returns:	[int] –
A list of device_ids

	
encryption = None

	

	
get_session_cipher(jid, device_id)[source]

	

	
handlePreKeyWhisperMessage(recipient_id, device_id, key)[source]

	

	
handleWhisperMessage(recipient_id, device_id, key)[source]

	

	
own_device_id

	

	
own_device_id_published()[source]

	Return True only if own device id was added via
:py:method:`OmemoState.add_own_devices()`.

	
own_devices = []

	

	
own_devices_without_sessions(own_jid)[source]

	List own device_ids which have no axolotl session.

	Parameters:	own_jid (string) –
Workaround for missing own jid in OmemoState

	Returns:	[int] –
A list of device_ids

	
session_ciphers = {}

	

 Copyright 2016, Bahtiar `kalkin-` Gadimov.
 Last updated on Jan 13, 2016.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Python OMEMO Library-0.1.0

Collective Code Construction Contract

The Collective Code Construction Contract (C4) is an evolution of the
github.com Fork + Pull Model [https://help.github.com/articles/using-pull-requests/], aimed at providing an
optimal collaboration model for free software projects. This is revision 1 of
the C4 specification.

License

Copyright (c) 2009-2015 Pieter Hintjens.

This Specification is free software; you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by the Free
Software Foundation; either version 3 of the License, or (at your option) any
later version.

This Specification is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more
details.

You should have received a copy of the GNU General Public License along with
this program; if not, see <http://www.gnu.org/licenses>.

Language

The key words “MUST”, “MUST NOT”, “REQUIRED”, “SHALL”, “SHALL NOT”, “SHOULD”,
“SHOULD NOT”, “RECOMMENDED”, “MAY”, and “OPTIONAL” in this document are to be
interpreted as described in RFC 2119 [https://tools.ietf.org/html/rfc2119].

Goals

C4 is meant to provide a reusable optimal collaboration model for open source
software projects. It has these specific goals:

	To maximize the scale of the community around a project, by reducing the
friction for new Contributors and creating a scaled participation model with
strong positive feedbacks;

	To relieve dependencies on key individuals by separating different skill sets
so that there is a larger pool of competence in any required domain;

	To allow the project to develop faster and more accurately, by increasing the
diversity of the decision making process;

	To support the natural life cycle of project versions from experimental
through to stable, by allowing safe experimentation, rapid failure, and
isolation of stable code;

	To reduce the internal complexity of project repositories, thus making it
easier for Contributors to participate and reducing the scope for error;

	To enforce collective ownership of the project, which increases economic
incentive to Contributors and reduces the risk of hijack by hostile entities.

Design

Preliminaries

	The project SHALL use the git distributed revision control system.

	The project SHALL be hosted on github.com or equivalent, herein called the
“Platform”.

	The project SHALL use the Platform issue tracker.

	The project SHOULD have clearly documented guidelines for code style.

	A “Contributor” is a person who wishes to provide a patch, being a set of
commits that solve some clearly identified problem.

	A “Maintainer” is a person who merges patches to the project. Maintainers are
not developers; their job is to enforce process.

	Contributors SHALL NOT have commit access to the repository unless they are
also Maintainers.

	Maintainers SHALL have commit access to the repository.

	Everyone, without distinction or discrimination, SHALL have an equal right to
become a Contributor under the terms of this contract.

Licensing and Ownership

	The project SHALL use a share-alike license, such as the GPLv3 or a variant
thereof (LGPL, AGPL), or the MPLv2.

	All contributions to the project source code (“patches”) SHALL use the same
license as the project.

	All patches are owned by their authors. There SHALL NOT be any copyright
assignment process.

	The copyrights in the project SHALL be owned collectively by all its
Contributors.

	Each Contributor SHALL be responsible for identifying themselves in the
project Contributor list.

Patch Requirements

	Maintainers and Contributors MUST have a Platform account and SHOULD
use their real names or a well-known alias.

	A patch SHOULD be a minimal and accurate answer to exactly one identified and
agreed problem.

	A patch MUST adhere to the code style guidelines of the project if these are
defined.

	A patch MUST adhere to the “Evolution of Public Contracts” guidelines defined
below.

	A patch SHALL NOT include non-trivial code from other projects unless the
Contributor is the original author of that code.

	A patch MUST compile cleanly and pass project self-tests on at least the
principle target platform.

	A patch commit message SHOULD consist of a single short (less than 50
character) line summarizing the change, optionally followed by a blank line
and then a more thorough description.

	A “Correct Patch” is one that satisfies the above requirements.

Development Process

	Change on the project SHALL be governed by the pattern of accurately
identifying problems and applying minimal, accurate solutions to these
problems.

	To request changes, a user SHOULD log an issue on the project Platform issue
tracker.

	The user or Contributor SHOULD write the issue by describing the problem they
face or observe.

	The user or Contributor SHOULD seek consensus on the accuracy of their
observation, and the value of solving the problem.

	Users SHALL NOT log feature requests, ideas, suggestions, or any solutions to
problems that are not explicitly documented and provable.

	Thus, the release history of the project SHALL be a list of meaningful issues
logged and solved.

	To work on an issue, a Contributor SHALL fork the project repository and then
work on their forked repository.

	To submit a patch, a Contributor SHALL create a Platform pull request back to
the project.

	A Contributor SHALL NOT commit changes directly to the project.

	If the Platform implements pull requests as issues, a Contributor MAY
directly send a pull request without logging a separate issue.

	To discuss a patch, people MAY comment on the Platform pull request, on the
commit, or elsewhere.

	To accept or reject a patch, a Maintainer SHALL use the Platform interface.

	Maintainers SHOULD NOT merge their own patches except in exceptional cases,
such as non-responsiveness from other Maintainers for an extended period (more
than 1-2 days).

	Maintainers SHALL NOT make value judgments on correct patches.

	Maintainers SHALL merge correct patches from other Contributors rapidly.

	The Contributor MAY tag an issue as “Ready” after making a pull request for
the issue.

	The user who created an issue SHOULD close the issue after checking the patch
is successful.

	Maintainers SHOULD ask for improvements to incorrect patches and
SHOULD reject incorrect patches if the Contributor does not respond
constructively.

	Any Contributor who has value judgments on a correct patch SHOULD express
these via their own patches.

	Maintainers MAY commit changes to non-source documentation directly to the
project.

Creating Stable Releases

	The project SHALL have one branch (“master”) that always holds the latest
in-progress version and SHOULD always build.

	The project SHALL NOT use topic branches for any reason. Personal forks
MAY use topic branches.

	To make a stable release someone SHALL fork the repository by copying it and
thus become maintainer of this repository.

	Forking a project for stabilization MAY be done unilaterally and without
agreement of project maintainers.

	A stabilization project SHOULD be maintained by the same process as the main
project.

	A patch to a stabilization project declared “stable” SHALL be accompanied by
a reproducible test case.

Evolution of Public Contracts

	All Public Contracts (APIs or protocols) SHALL be documented.

	All Public Contracts SHOULD have space for extensibility and experimentation.

	A patch that modifies a stable Public Contract SHOULD not break existing
applications unless there is overriding consensus on the value of doing this.

	A patch that introduces new features to a Public Contract SHOULD do so using
new names.

	Old names SHOULD be deprecated in a systematic fashion by marking new names
as “experimental” until they are stable, then marking the old names as
“deprecated”.

	When sufficient time has passed, old deprecated names SHOULD be marked
“legacy” and eventually removed.

	Old names SHALL NOT be reused by new features.

	When old names are removed, their implementations MUST provoke an exception
(assertion) if used by applications.

Project Administration

	The project founders SHALL act as Administrators to manage the set of project
Maintainers.

	The Administrators SHALL ensure their own succession over time by promoting
the most effective Maintainers.

	A new Contributor who makes a correct patch SHALL be invited to become a
Maintainer.

	Administrators MAY remove Maintainers who are inactive for an extended period
of time, or who repeatedly fail to apply this process accurately.

	Administrators SHOULD block or ban “bad actors” who cause stress and pain to
others in the project. This should be done after public discussion, with a
chance for all parties to speak. A bad actor is someone who repeatedly ignores
the rules and culture of the project, who is needlessly argumentative or
hostile, or who is offensive, and who is unable to self-correct their behavior
when asked to do so by others.

Further Reading

	Argyris’ Models 1 and 2 - the goals of C4.1 are consistent with Argyris’
Model 2.

	Toyota Kata - covering the Improvement Kata (fixing problems one at a time)
and the Coaching Kata (helping others to learn the Improvement Kata).

Implementations

	The ZeroMQ community uses the C4.1 process for many projects.

	OSSEC uses the C4.1 process.

	The Machinekit community uses the C4.1 process.

 Copyright 2016, Bahtiar `kalkin-` Gadimov.
 Last updated on Jan 13, 2016.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Python OMEMO Library-0.1.0

Authors

	Bahtiar kalkin- Gadimov - https://github.com/kalkin

	Daniel Gultsch - https://github.com/inputmice

	Tarek Galal - https://github.com/tgalal (original axolotl store implementation)

 Copyright 2016, Bahtiar `kalkin-` Gadimov.
 Last updated on Jan 13, 2016.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 previous |

 	Python OMEMO Library-0.1.0

Changelog

0.1.0 (2016-01-11)

	First release on PyPI.

 Copyright 2016, Bahtiar `kalkin-` Gadimov.
 Last updated on Jan 13, 2016.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	Python OMEMO Library-0.1.0

 Index

 Index pages by letter:

 _
 | A
 | B
 | C
 | D
 | E
 | G
 | H
 | O
 | S

 Full index on one page
 (can be huge)

 Copyright 2016, Bahtiar `kalkin-` Gadimov.
 Last updated on Jan 13, 2016.
 Created using Sphinx 1.3.1.

 _static/comment-bright.png

_static/down.png

genindex-H.html

 Navigation

 		
 index

 		Python OMEMO Library-0.1.0 »

Index – H

 		

 		handlePreKeyWhisperMessage() (omemo.state.OmemoState method)

 		

 		handleWhisperMessage() (omemo.state.OmemoState method)

 © Copyright 2016, Bahtiar `kalkin-` Gadimov.
 Last updated on Jan 13, 2016.
 Created using Sphinx 1.3.1.

_static/minus.png

_static/comment-close.png

_static/plus.png

genindex-E.html

 Navigation

 		
 index

 		Python OMEMO Library-0.1.0 »

Index – E

 		

 		encryption (omemo.state.OmemoState attribute)

 © Copyright 2016, Bahtiar `kalkin-` Gadimov.
 Last updated on Jan 13, 2016.
 Created using Sphinx 1.3.1.

genindex-S.html

 Navigation

 		
 index

 		Python OMEMO Library-0.1.0 »

Index – S

 		

 		session_ciphers (omemo.state.OmemoState attribute)

 © Copyright 2016, Bahtiar `kalkin-` Gadimov.
 Last updated on Jan 13, 2016.
 Created using Sphinx 1.3.1.

genindex-G.html

 Navigation

 		
 index

 		Python OMEMO Library-0.1.0 »

Index – G

 		

 		get_session_cipher() (omemo.state.OmemoState method)

 © Copyright 2016, Bahtiar `kalkin-` Gadimov.
 Last updated on Jan 13, 2016.
 Created using Sphinx 1.3.1.

genindex-B.html

 Navigation

 		
 index

 		Python OMEMO Library-0.1.0 »

Index – B

 		

 		build_session() (omemo.state.OmemoState method)

 		

 		bundle (omemo.state.OmemoState attribute)

 © Copyright 2016, Bahtiar `kalkin-` Gadimov.
 Last updated on Jan 13, 2016.
 Created using Sphinx 1.3.1.

_static/file.png

genindex-C.html

 Navigation

 		
 index

 		Python OMEMO Library-0.1.0 »

Index – C

 		

 		create_msg() (omemo.state.OmemoState method)

 © Copyright 2016, Bahtiar `kalkin-` Gadimov.
 Last updated on Jan 13, 2016.
 Created using Sphinx 1.3.1.

genindex-O.html

 Navigation

 		
 index

 		Python OMEMO Library-0.1.0 »

Index – O

 		

 		OmemoState (class in omemo.state)

 		own_device_id (omemo.state.OmemoState attribute)

 		own_device_id_published() (omemo.state.OmemoState method)

 		

 		own_devices (omemo.state.OmemoState attribute)

 		own_devices_without_sessions() (omemo.state.OmemoState method)

 © Copyright 2016, Bahtiar `kalkin-` Gadimov.
 Last updated on Jan 13, 2016.
 Created using Sphinx 1.3.1.

search.html

 Navigation

 		
 index

 		Python OMEMO Library-0.1.0 »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2016, Bahtiar `kalkin-` Gadimov.
 Last updated on Jan 13, 2016.
 Created using Sphinx 1.3.1.

genindex-all.html

 Navigation

 		
 index

 		Python OMEMO Library-0.1.0 »

Index

 _
 | A
 | B
 | C
 | D
 | E
 | G
 | H
 | O
 | S

_

 		

 		__init__() (omemo.state.OmemoState method)

 		

 		__module__ (omemo.state.OmemoState attribute)

A

 		

 		add_devices() (omemo.state.OmemoState method)

 		

 		add_own_devices() (omemo.state.OmemoState method)

B

 		

 		build_session() (omemo.state.OmemoState method)

 		

 		bundle (omemo.state.OmemoState attribute)

C

 		

 		create_msg() (omemo.state.OmemoState method)

D

 		

 		decrypt_msg() (omemo.state.OmemoState method)

 		device_ids (omemo.state.OmemoState attribute)

 		

 		device_list_for() (omemo.state.OmemoState method)

 		devices_without_sessions() (omemo.state.OmemoState method)

E

 		

 		encryption (omemo.state.OmemoState attribute)

G

 		

 		get_session_cipher() (omemo.state.OmemoState method)

H

 		

 		handlePreKeyWhisperMessage() (omemo.state.OmemoState method)

 		

 		handleWhisperMessage() (omemo.state.OmemoState method)

O

 		

 		OmemoState (class in omemo.state)

 		own_device_id (omemo.state.OmemoState attribute)

 		own_device_id_published() (omemo.state.OmemoState method)

 		

 		own_devices (omemo.state.OmemoState attribute)

 		own_devices_without_sessions() (omemo.state.OmemoState method)

S

 		

 		session_ciphers (omemo.state.OmemoState attribute)

 © Copyright 2016, Bahtiar `kalkin-` Gadimov.
 Last updated on Jan 13, 2016.
 Created using Sphinx 1.3.1.

_modules/index.html

 Navigation

 		
 index

 		Python OMEMO Library-0.1.0 »

 All modules for which code is available

		omemo.state

 © Copyright 2016, Bahtiar `kalkin-` Gadimov.
 Last updated on Jan 13, 2016.
 Created using Sphinx 1.3.1.

genindex-_.html

 Navigation

 		
 index

 		Python OMEMO Library-0.1.0 »

Index – _

 		

 		__init__() (omemo.state.OmemoState method)

 		

 		__module__ (omemo.state.OmemoState attribute)

 © Copyright 2016, Bahtiar `kalkin-` Gadimov.
 Last updated on Jan 13, 2016.
 Created using Sphinx 1.3.1.

_static/comment.png

genindex-D.html

 Navigation

 		
 index

 		Python OMEMO Library-0.1.0 »

Index – D

 		

 		decrypt_msg() (omemo.state.OmemoState method)

 		device_ids (omemo.state.OmemoState attribute)

 		

 		device_list_for() (omemo.state.OmemoState method)

 		devices_without_sessions() (omemo.state.OmemoState method)

 © Copyright 2016, Bahtiar `kalkin-` Gadimov.
 Last updated on Jan 13, 2016.
 Created using Sphinx 1.3.1.

_modules/omemo/state.html

 Navigation

 		
 index

 		Python OMEMO Library-0.1.0 »

 		Module code »

 Source code for omemo.state

-*- coding: utf-8 -*-
#
Copyright 2015 Bahtiar `kalkin-` Gadimov <bahtiar@gadimov.de>
#
This file is part of Gajim-OMEMO plugin.
#
The Gajim-OMEMO plugin is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by the Free
Software Foundation, either version 3 of the License, or (at your option) any
later version.
#
Gajim-OMEMO is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR
A PARTICULAR PURPOSE. See the GNU General Public License for more details.
#
You should have received a copy of the GNU General Public License along with
the Gajim-OMEMO plugin. If not, see <http://www.gnu.org/licenses/>.
#

import logging
from base64 import b64encode

from axolotl.ecc.djbec import DjbECPublicKey
from axolotl.identitykey import IdentityKey
from axolotl.invalidmessageexception import InvalidMessageException
from axolotl.invalidversionexception import InvalidVersionException
from axolotl.nosessionexception import NoSessionException
from axolotl.protocol.prekeywhispermessage import PreKeyWhisperMessage
from axolotl.protocol.whispermessage import WhisperMessage
from axolotl.sessionbuilder import SessionBuilder
from axolotl.sessioncipher import SessionCipher
from axolotl.state.prekeybundle import PreKeyBundle
from axolotl.util.keyhelper import KeyHelper
from Crypto.Random import get_random_bytes

from .aes_gcm import NoValidSessions, aes_decrypt, aes_encrypt
from .liteaxolotlstore import LiteAxolotlStore

log = logging.getLogger('omemo')

[docs]class OmemoState:
 session_ciphers = {}
 encryption = None

 device_ids = {}
 own_devices = []

[docs] def __init__(self, connection):
 """ Instantiates an OmemoState object.

 :param connection: an :py:class:`sqlite3.Connection`
 """
 self.store = LiteAxolotlStore(connection)
 self.encryption = self.store.encryptionStore

[docs] def build_session(self, recipient_id, device_id, bundle_dict):
 sessionBuilder = SessionBuilder(self.store, self.store, self.store,
 self.store, recipient_id, device_id)

 registration_id = self.store.getLocalRegistrationId()

 preKeyPublic = DjbECPublicKey(bundle_dict['preKeyPublic'][1:])

 signedPreKeyPublic = DjbECPublicKey(bundle_dict['signedPreKeyPublic'][
 1:])
 identityKey = IdentityKey(DjbECPublicKey(bundle_dict['identityKey'][
 1:]))

 prekey_bundle = PreKeyBundle(
 registration_id, device_id, bundle_dict['preKeyId'], preKeyPublic,
 bundle_dict['signedPreKeyId'], signedPreKeyPublic,
 bundle_dict['signedPreKeySignature'], identityKey)

 sessionBuilder.processPreKeyBundle(prekey_bundle)
 return self.get_session_cipher(recipient_id, device_id)

[docs] def add_devices(self, name, devices):
 """ Return a an.

 Parameters

 jid : string
 The contacts jid

 devices: [int]
 A list of devices
 """
 log.debug('Saving devices for ' + name + ' → ' + str(devices))
 self.device_ids[name] = devices

[docs] def add_own_devices(self, devices):
 """ Overwrite the current :py:attribute:`OmemoState.own_devices` with
 the given devices.

 Parameters

 devices : [int]
 A list of device_ids
 """
 self.own_devices = devices

 @property
 def own_device_id(self):
 reg_id = self.store.getLocalRegistrationId()
 assert reg_id is not None, \
 "Requested device_id but there is no generated"

 return ((reg_id % 2147483646) + 1)

[docs] def own_device_id_published(self):
 """ Return `True` only if own device id was added via
 :py:method:`OmemoState.add_own_devices()`.
 """
 return self.own_device_id in self.own_devices

 @property
 def bundle(self):
 prekeys = [
 (k.getId(), b64encode(k.getKeyPair().getPublicKey().serialize()))
 for k in self.store.loadPreKeys()
]

 identityKeyPair = self.store.getIdentityKeyPair()

 signedPreKey = KeyHelper.generateSignedPreKey(
 identityKeyPair, KeyHelper.getRandomSequence(65536))

 self.store.storeSignedPreKey(signedPreKey.getId(), signedPreKey)

 result = {
 'signedPreKeyId': signedPreKey.getId(),
 'signedPreKeyPublic':
 b64encode(signedPreKey.getKeyPair().getPublicKey().serialize()),
 'signedPreKeySignature': b64encode(signedPreKey.getSignature()),
 'identityKey':
 b64encode(identityKeyPair.getPublicKey().serialize()),
 'prekeys': prekeys
 }
 return result

[docs] def decrypt_msg(self, msg_dict):
 own_id = self.own_device_id
 if own_id not in msg_dict['keys']:
 log.warn('OMEMO message does not contain our device key')
 return

 iv = msg_dict['iv']
 sid = msg_dict['sid']
 sender_jid = msg_dict['sender_jid']
 payload = msg_dict['payload']

 encrypted_key = msg_dict['keys'][own_id]

 try:
 key = self.handlePreKeyWhisperMessage(sender_jid, sid,
 encrypted_key)
 except (InvalidVersionException, InvalidMessageException):
 try:
 key = self.handleWhisperMessage(sender_jid, sid, encrypted_key)
 except (NoSessionException, InvalidMessageException) as e:
 log.error('No Session found ' + e.message)
 log.error('sender_jid → ' + str(sender_jid) + ' sid =>' + str(
 sid))
 return

 result = aes_decrypt(key, iv, payload)
 log.debug("Decrypted msg ⇒ " + result)
 return result

[docs] def create_msg(self, from_jid, jid, plaintext):
 key = get_random_bytes(16)
 iv = get_random_bytes(16)
 encrypted_keys = {}

 devices_list = self.device_list_for(jid)
 if len(devices_list) == 0:
 log.error('No known devices')
 return

 for dev in devices_list:
 self.get_session_cipher(jid, dev)
 session_ciphers = self.session_ciphers[jid]
 if not session_ciphers:
 log.warn('No session ciphers for ' + jid)
 return

 my_other_devices = set(self.own_devices) - set({self.own_device_id})
 # Encrypt the message key with for each of our own devices
 for dev in my_other_devices:
 cipher = self.get_session_cipher(from_jid, dev)
 encrypted_keys[dev] = cipher.encrypt(key).serialize()

 # Encrypt the message key with for each of receivers devices
 for rid, cipher in session_ciphers.items():
 try:
 encrypted_keys[rid] = cipher.encrypt(key).serialize()
 except:
 log.warn('Failed to find key for device ' + str(
 rid))

 if len(encrypted_keys) == 0:
 log_msg = 'Encrypted keys empty'
 log.error(log_msg)
 raise NoValidSessions(log_msg)

 payload = aes_encrypt(key, iv, plaintext)

 result = {'sid': self.own_device_id,
 'keys': encrypted_keys,
 'jid': jid,
 'iv': iv,
 'payload': payload}

 log.debug('encrypted message')
 log.debug(result)
 return result

[docs] def device_list_for(self, jid):
 """ Return a list of known device ids for the specified jid.

 Parameters

 jid : string
 The contacts jid
 """
 if jid not in self.device_ids:
 return set()
 return set(self.device_ids[jid])

[docs] def devices_without_sessions(self, jid):
 """ List device_ids for the given jid which have no axolotl session.

 Parameters

 jid : string
 The contacts jid

 Returns

 [int]
 A list of device_ids
 """
 known_devices = self.device_list_for(jid)
 missing_devices = [dev
 for dev in known_devices
 if not self.store.containsSession(jid, dev)]
 if missing_devices:
 log.debug('Missing device sessions: ' + str(
 missing_devices))
 return missing_devices

[docs] def own_devices_without_sessions(self, own_jid):
 """ List own device_ids which have no axolotl session.

 Parameters

 own_jid : string
 Workaround for missing own jid in OmemoState

 Returns

 [int]
 A list of device_ids
 """
 known_devices = set(self.own_devices) - {self.own_device_id}
 missing_devices = [dev
 for dev in known_devices
 if not self.store.containsSession(own_jid, dev)]
 if missing_devices:
 log.debug('Missing device sessions: ' + str(
 missing_devices))
 return missing_devices

[docs] def get_session_cipher(self, jid, device_id):
 if jid not in self.session_ciphers:
 self.session_ciphers[jid] = {}

 if device_id not in self.session_ciphers[jid]:
 cipher = SessionCipher(self.store, self.store, self.store,
 self.store, jid, device_id)
 self.session_ciphers[jid][device_id] = cipher

 return self.session_ciphers[jid][device_id]

[docs] def handlePreKeyWhisperMessage(self, recipient_id, device_id, key):
 preKeyWhisperMessage = PreKeyWhisperMessage(serialized=key)
 sessionCipher = self.get_session_cipher(recipient_id, device_id)
 key = sessionCipher.decryptPkmsg(preKeyWhisperMessage)
 log.debug('PreKeyWhisperMessage -> ' + str(key))
 return key

[docs] def handleWhisperMessage(self, recipient_id, device_id, key):
 whisperMessage = WhisperMessage(serialized=key)
 sessionCipher = self.get_session_cipher(recipient_id, device_id)
 key = sessionCipher.decryptMsg(whisperMessage)
 log.debug('WhisperMessage -> ' + str(key))
 return key

 © Copyright 2016, Bahtiar `kalkin-` Gadimov.
 Last updated on Jan 13, 2016.
 Created using Sphinx 1.3.1.

genindex-A.html

 Navigation

 		
 index

 		Python OMEMO Library-0.1.0 »

Index – A

 		

 		add_devices() (omemo.state.OmemoState method)

 		

 		add_own_devices() (omemo.state.OmemoState method)

 © Copyright 2016, Bahtiar `kalkin-` Gadimov.
 Last updated on Jan 13, 2016.
 Created using Sphinx 1.3.1.

_static/down-pressed.png

_static/ajax-loader.gif

_static/up-pressed.png

_static/up.png

